If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10=51
We move all terms to the left:
7x^2+10-(51)=0
We add all the numbers together, and all the variables
7x^2-41=0
a = 7; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·7·(-41)
Δ = 1148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1148}=\sqrt{4*287}=\sqrt{4}*\sqrt{287}=2\sqrt{287}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{287}}{2*7}=\frac{0-2\sqrt{287}}{14} =-\frac{2\sqrt{287}}{14} =-\frac{\sqrt{287}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{287}}{2*7}=\frac{0+2\sqrt{287}}{14} =\frac{2\sqrt{287}}{14} =\frac{\sqrt{287}}{7} $
| 8x-7+2x+103-x=180 | | (x)(x+2)+168=0 | | x2-3x-44=-3x+5 | | 5*5x-15x-20=0 | | 4x2+24x+12=0 | | 0=-15y | | –s−10=2s+8 | | x^2-3x-44=x2−3x−44=-3x+5−3x+5 | | 4(r+5)+2r=110 | | 48*90=x | | X^2+3x=324 | | 4x^2/2^x=16 | | 6x+22=4x+}40 | | 5x+2-3+x+2(5+3x)=33 | | 4(x+1.50)=38 | | 4s−4=–10+5s | | 15x=519 | | m=500 | | 4(x+1.50)=26 | | (x+2)(x+3)(x-4)(x-5)-44=0 | | 4000=4(3)^x | | 4(x-9)/3=4/3x-12 | | 4x-2=2x16 | | (D^4+18^2+81)y=0 | | 4(x=3)-4=81/2x+1 | | X(2x+1)=136 | | 6x^{2}=5x-3 | | 3/4x+7/8=3x+1/8 | | b−6=14 | | 26=-1+(27x)^(3/4) | | 2x2=50x | | -18=1v-3 |